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Abstract
We consider a system consisting of a sequential composition of Mealy machines, called head and

tail. We study two problems related to these systems. In the first problem, models of both head and
tail components are available, and the aim is to obtain a replacement for either of them with the
minimum number of states. We show that this minimization problem is NP-complete for both the
head and the tail component. This contrasts with the state-of-the-art method for the optimization
of the tail, whose time cost is doubly-exponential in the size of the composition, rather than only
exponential. We identify the root cause for the additional blow-up and provide an extension of the
existing theory which allows both the design of tail-minimization algorithms with the appropriate
complexity, as well as the adaptation of existing techniques. In the second problem we study, either
the head or the tail is known, and a desired model for the whole system is given. The objective
is to build the missing component in a way that the composition behaves according to the given
model. When synthesising the tail, we prove that it is possible to decide in polynomial time whether
a solution to this problem exists, but obtaining it in the affirmative case has exponential cost. The
reason is that for some heads and desired system models, all tails solving the synthesis problem
have exponential size. Additionally, we also give tight lower bounds for the size of a solution when
the missing component is the head. In this case the synthesis problem has polynomial complexity,
as evidenced by existing methods. Finally, we discuss how our results relate to the problems of
component minimization and synthesis in arbitrary synchronous compositions of Mealy machines.
In particular, our findings imply that the general component-minimization problem is NP-complete.
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1 Introduction

Two classical problems related to Finite State Machines are the optimization of a given
machine [14, 9, 20], and the synthesis of a model satisfying some requirements [5, 6, 19, 24].
However, real-world systems usually consist of multiple interconnected components, rather
than a single structure. These compositions lead to problems that have been studied
intensively [11, 12, 28]. In this paper, we consider a cascade composition T ◦ H of two
Mealy machines, H (head) and T (tail), where T receives inputs from H but not vice-versa.
We focus on two tasks related to these systems: component minimization and component
synthesis. In the Component Minimization Problem, the aim is obtain a smallest replacement
for either H or T which does not alter the behaviour of the composition. To do this, one may
try minimizing the desired component in isolation. However, there may be more room for
optimization. This way, it is possible to find T and T ′ of different sizes that are not equivalent
in isolation, but that can be used interchangeably in the context of another component H

[27]. In the case of the Component Synthesis Problem, one of the components H, T is known
and an overall desired model M is given. Here, the goal is to build the missing components in
such a way that the resulting composition behaves according to M [4, 32, 28]. This problem
may occur, for instance, in rectification, where a designer wants to repair or change the
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behaviour of a system by only modifying a part of it. While the the Component Minimization
Problem always admits a solution - if no smaller replacement exists, the component under
consideration is already optimal -, this may not hold for the Component Synthesis Problem
and thus deciding if an instance of the problem has a solution is also a question of interest.
The main contributions of this paper are as follows: First, we show that the state-
of-the-art algorithm for optimizing the tail in a cascade composition are exponentially
more costly than the actual complexity of the problem. Second, we describe a natural
modification of this algorithm that avoids the complexity blow-up. Third, we give rigorous
complexity analyses for both the Component Synthesis and Minimization problems in cascade
compositions. We give a more detailed overview below.

The Tail Minimization Problem can be considered the most-studied case of the Component
Minimization Problem. The exact algorithm for this scenario was given by Kim and Newborn
[16]. Given a cascade T ◦ H, they compute the smallest replacement T ′ by minimizing an
incompletely specified (IS) Mealy machine N with size proportional to 2|H||T |. Minimization
of IS machines is known to be NP-hard [23], so known algorithms for this task take exponential
time in the size of N [25, 1, 21], which cannot be improved under standard complexity-
theoretic assumptions. This results in the complexity of the whole procedure being doubly
exponential.

Surprisingly, a simple observation reveals that this approach cannot be efficient: Indeed,
given a machine T ′ it is possible to decide in polynomial time whether its a valid replacement
for T just by comparing T ′ ◦H and T ◦H. This shows that the Tail Minimization Problem lies
in NP, and exponential-time solutions should be expected. Moreover, this reasoning extends
to more arbitrary compositions of Mealy Machines, implying that the general approach given
in [32, 28, 12] is not optimal in many cases. A notable exception is the Head Minimization
problem, where the main technique [4] has exponential cost, rather than doubly-exponential.

The reason for the additional blow-up in the complexity of the Kim-Newborn method
lies in a determinization step that results in N being exponentially larger than H. Various
non-exact methods have been studied to avoid this step. For instance, Rho and Somenzi [17]
present an heuristic in which a “summarized” incompletely specified machine is obtained,
and Wang and Brayton [15] avoid performing exact state minimization and in turn perform
optimizations at the net-list logic level. We introduce the notion of a of observation machines
(OMs), which can be regarded as IS machines with universal branching, and show that the
determinization step in the K-N algorithm can be avoided by considering OMs instead of IS
machines. Following this, we generalize the theoretical foundations of the minimization of IS
machines [10] to the setting of OMs, allowing for the extension of existing techniques.

In addition to this study, we examine the complexity of the Minimization and Synthesis
problems in the setting of cascade compositions in greater detail. We show that both the
Head Minimization and the Tail Minimization problems are NP-complete. This is done
through a reduction from the problem of minimizing an IS machine for the case of the tail,
and a reduction from the Boolean satisfiability problem in the case of the head. When
considering the synthesis task we show the surprising result that deciding the feasibility
of the Tail Synthesis Problem takes polynomial time, but computing an actual solution T

has exponential complexity, matching the bound given by the general approach [32]. This
follows from the existence of instances of the synthesis problem where all solutions T have
exponential size. We give a family of such instances constructively. Additionally, we show
that it is possible to represent all solutions of the Tail Synthesis Problem via an OM. This
representation avoids any kind of subset construction and hence is exponentially more succinct
than the representation of the flexibility given in [32]. To complete our analysis, we prove
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a lower complexity bound for the Head Synthesis problem that matches the cost of the
procedure in [4], and is tight as a result.

Finally, we note that despite the simplicity of cascade compositions, in various cases it is
possible to tackle problems in more complex two-component networks via simple reductions to
this setting [29]. Moreover, cascade compositions can be seen as particular instances of general
two-component architectures. An implication of this fact is that the Component Minimization
Problem remains NP-complete when considering arbitrary non-trivial compositions.

2 Preliminaries

General Notation. We write [k] for {0, . . . , k − 1}, 2X for the power set of X, and X∗ for
the set of finite words of arbitrary length over X. We use overlined variables x = x0 . . . xn−1
for words, and write ϵ for the empty word. Given two words of the same length we define
⟨x, y⟩ := (x0, y0) . . . (xn, yn) ∈ (X × Y )∗.
Mealy Machines. Let X and Y be finite alphabets. A Mealy machine M from X to Y

is a tuple (X, Y, SM , DM , δM , λM , rM ), where SM is a finite set of states, DM ⊆ SM × X is a
specification domain, δM : DM → SM is the next state function, λM : DM → Y is the output
function and rM ∈ SM is the initial state. We say that an input string x := x0x1 . . . xn ∈ X∗

is defined at a state s0 if there are states s1, . . . , sn+1 satisfying both (si, xi) ∈ DM and
si+1 = δM (si, xi) for all 0 ≤ i ≤ n. We call the sequence s0, x0, y0, s1, . . . , sn, xn, yn, sn+1,
where yi = λM (si, xi), the run of M on x from s0. When s0 = rM , we simply call this
sequence the run of M on x. We write ΩM (s) for the set of input sequences defined at
state s, and ΩM for ΩM (r). We lift δM and λM to defined input sequences in the natural
way. We define δM (s, ϵ) = s, λM (s, ϵ) = ϵ for all s. Given x ∈ ΩM (s), if s′ = δM (s, x) and
(s′, x′) ∈ DM then δM (s, xx′) = δM (s′, x′) and λM (s, xx′) = λM (s, x)λM (s′, x′). We write
δM (x) and λM (x) for δM (rM , x) and λM (rM , x) respectively. We define Out(M) as the set
of words λM (x), for all x ∈ ΩM . We define the set Tr(M) ⊆ (X × Y )∗ of traces produced
by M as the one containing all words of the form ⟨x, y⟩, where x = x1x2, y = λM (x)y2, and
x1 is the maximal prefix of x which belongs to ΩM . Intuitively, Tr contains I/O words where
the outputs are produced according to λM as long as the inputs are defined, and arbitrary
outputs can be produced afterwards.

We say M is completely specified, if DM = SM × X. Otherwise we say that M is
incompletely specified. From now on, we refer to completely specified Mealy machines
simply as Mealy machines, and to incompletely specified ones as IS Mealy machines. For
considerations of computational complexity, we consider alphabets to be fixed and the size
|M | of a Mealy machine M to be proportional to its number of states.

We say that a (completely specified) Mealy machine N implements an IS Mealy machine
M with the same input/output alphabets as N if λN (x) = λM (x) for all x ∈ ΩM . Note
that this is equivalent to Tr(N) ⊆ Tr(M). The problem of minimizing an IS Mealy machine
M consists of finding a minimal implementation for it. It is well known that this problem
is computationally hard, in contrast with the minimization of completely specified Mealy
machines. More precisely, we say that M is n-implementable if it has some implementation
whose size is not greater than n. Given an IS machine M and some n, deciding whether M

is n-implementable is an NP-complete problem [23].
Automata Over Finite Words. We consider automata over finite words where all states
are accepting. Let Σ be a finite alphabet. A non-deterministic finite automaton (NFA)
A over Σ, is a tuple (Σ, SA, ∆A, rA), where SA is a finite set of states, ∆A : SA × Σ → 2SA

is the transition function, and rA ∈ SA is the initial state. A run of A on a word a is defined
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Figure 1 Two different compositions of Mealy machines.

as usual. We say that A accepts a word a if there is a run of A on a. The language of A

is the set L(A) ⊆ Σ∗ containing the words accepted by A. Note that L(A) is prefix-closed.
We lift ∆A to words a ∈ Σ∗ and sets of states Q ⊆ SA in the natural way. The set ∆A(s, a)
consists of all s′ such that some run of A on a from s finishes at s′, and we write ∆A(Q, a) for
∪s∈Q∆A(s, a). We write ∆A(a) for ∆A(rA, a). We say that A is deterministic (a DFA),
if |∆(s, a)| ≤ 1 for all s, a. For considerations of computational complexity, we consider the
alphabet to be fixed, as before, and the size |A| of an automaton A to be proportional to
|SA| +

∑
s,a |∆A(s, a)|.

We note that Mealy machines can be seen as particular cases of DFAs, in the sense that
any Mealy machine M from X to Y corresponds naturally to a DFAs A over X × Y with
(almost) the same number of states satisfying Tr(M) = L(A). If M is completely specified,
A can be obtained just by coping M and rewriting the I/O x/y pairs in the transitions as
inputs. That is, whenever δM (s, x) = t and λM (s, x) = y, we define ∆A(s, (x, y)) = {t}.
If M is incompletely specified, in addition to this step we also add outgoing transitions
∆A(s, (x, y)) = {∗} for all undefined pairs (s, x) /∈ DM and all y ∈ Y . Here ∗ denotes an
additional sink state added to A.

3 Problem statements

We define a cascade composition of Mealy machines as a system consisting of two
Mealy machines H, the head, and T , the tail, that work in sequential composition as shown
in Figure 1a. We write T ◦ H to refer to this sequential composition. The behaviour such
cascade composition can be described via another Mealy machine M resulting from a standard
product construction: Set SM := SH ×ST and rM := (rH , rT ). Let sH ∈ SH , sT ∈ ST , x ∈ X

and y := λH(sH , x). We define δM ((sH , sT ), x) := (s′
H , s′

T ) where s′
H := δH(sH , x) and

s′
T := δT (sT , y), and λM ((sH , sT ), x) := λT (sT , y). Given a cascade composition T ◦ H, we

say that a Mealy machine T ′ is a replacement for T if T ′ ◦ H ≡ T ◦ H. We say that T is
n-replaceable in T ◦ H if there is a replacement T ′ for T with at most n states.

We study two problems related to this composition. In the first, both components H

and T are given and the goal is to find a minimal replacement for either of them that leaves
the behaviour of the system unaltered. In the second, only one of the components is given,
together with an additional machine M , and one is asked to build the missing component in
such a way that T ◦ H ≡ M . We also consider two related decision problems.

▶ Problem 1 (Tail (Head) Minimization Problem). Given a cascade composition T ◦ H, find
a replacement T ′ (H ′) for T (H) with the minimum number of states.
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▶ Problem 2 (Tail (Head) Synthesis Problem). Given Mealy machines H (T ) and M sharing
the same input (output) alphabet, construct a Mealy machine T (H) so that T ◦ H ≡ M .

▶ Problem 3 (n-Replaceabilty of the Tail (Head)). Given a cascade composition T ◦ H and
a number n ∈ N, decide whether there is a replacement T ′ (H ′) for T (H) with at most n

states.

▶ Problem 4 (Feasibility of the Tail (Head) Synthesis Problem). Given Mealy machines H

(T ) and M with the same input (output) alphabet, decide whether there exists some Mealy
machine T (H) such that T ◦ H ≡ M .

3.1 General Method
Here we give a high-level description of the general method for component minimization and
synthesis in arbitrary synchronous compositions shown in [32, 28, 12]. The goal in both the
minimization and synthesis tasks is to construct a model for a component C in a composition
in such a way that the behaviour of the whole system matches a desired one. The two main
differences are that (1) in the optimization problem one aims for a smallest model, while in
the synthesis one any model suffices, and (2) a solution for the synthesis problem may not
exist at all for some instances.

In the general method a DFA over I/O words F called the “flexibility” of the component
C is computed (the equivalent formalism of “pseudo non-deterministic FSMs” is used in
[32, 28, 12]). This automata, also known as the the E-machine, satisfies the key property
that a model C ′ for C leads to desirable system behaviours if and only if Tr(C ′) ⊆ L(F ).
An important aspect of this construction is that T is exponentially larger than the system
components for arbitrary compositions. In the Minimization Problem one proceeds to obtain
a smallest C ′ satisfying Tr(C ′) ⊆ L(F ). This last optimization step is as hard as minimizing
a IS Mealy machine (given that DFAs are more general models), so it is expected to take
exponential time in the size of F (e.g., [30]), hence resulting in a total doubly-exponential
cost for the Component Minimization procedure. In the Synthesis Problem any machine C ′

satisfying Tr(C ′) ⊆ L(F ) suffices. Deciding whether such C ′ exists and computing it in the
affirmative case amounts to solving a two player game over F called a safety game [5, 6, 19].
This has linear complexity in the size of F , so the total cost of the synthesis procedure is
exponential.

As stated during the introduction, the case where the component under minimization/-
synthesis is the head H of a cascade T ◦ H deserves special mention. Here the flexibility F

can be computed in polynomial time through a simple product construction [4]. This makes
the minimization and synthesis procedures exponentially more efficient in this situation.

Finally, we note that there is a different strain of algorithms for the Tail Minimization
Problem, represented by [22, 2]. The aim of these is component learning, rather than
component minimization, but they can be used for the second task. These methods are
inspired in the L* algorithm for the active learning of regular languages [3], and their general
structure is as follows: they maintain a set O of input/output traces of the form ⟨y, z⟩,
where y ∈ Out(H) and z = λT (y). In the first step they enlarge the set O adding traces
until some criteria is met. In the second, they compute smallest machine T ′ consistent with
the observations in O, and they check whether T ′ is a suitable replacement for T . If it
is, the procedure is finished. If not, a counterexample is added to O and the first step is
carried out again. This is an interesting direction to explore. However, the time-cost of these
learning-based methods and their comparison to the ones represented by [32, 16] is unclear,
so they may share the same worst case complexity.
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4 Observation Machines

We introduce now observation machines, which can be regarded as IS Mealy machines
[12] with universal branching. This construction allows us to express the solutions of the
Tail Minimization Problem and the Tail Synthesis Problem exponentially more succinctly
than [16] and [32]. An observation machine (OM) from X to Y is a tuple M =
(X, Y, SM , DM , ∆M , λM , rM ) defined the same way as a Mealy machine except for the
next-state function ∆M , which now maps elements of the specification domain to sets of
states ∆M : DM → 2SM \ {∅}. A run of M over x ∈ X∗ starting from s0 ∈ SM , is
a sequence s0, x0, y0, s1, . . . , sn, xn, yn, sn+1, where (si, xi) ∈ DM , si+1 ∈ ∆M (si, xi) and
yi = λ(si, xi) for all 0 ≤ i ≤ n. We call this run simply a run of M on x when s0 := rM .
We say that a sequence x is defined at a state s if there is a run of M on x starting from
s. As with Mealy machines, we put ΩM (s) and ΩM for the sets of defined sequences at
s and at rM respectively. We say that M is consistent if all runs of M on any given
defined input sequence x ∈ ΩM have the same output. Unless otherwise specified, we assume
all OMs to be consistent. In this case we can lift λ to defined input sequences, witting
λM (x) for the unique output sequence y corresponding to all runs of M over x. We also
lift the transition function ∆M to defined sequences and sets of states as done previously
for NFAs. Note that when M has no branching, i.e. |∆M (s, x)| = 1 for all (s, x) ∈ DM , we
end up with a construction equivalent to an IS Mealy machine. Again, for considerations
of computational complexity, we consider alphabets to be fixed, and the size |M | to be
proportional to |SM | +

∑
(s,a)∈DM

|∆M (s, a)|.
We can use consistent OMs to represent specifications over Mealy machines. We say

that a machine N implements a OM M with the same input/output alphabets as N if
λN (x) = λM (x) for all x ∈ ΩM . Note that it is straightforward to check this property in
O(|N ||M |) time via a product construction. We can also define the set Tr(M) ⊆ (X × Y )∗

of traces produced by M the same way as with Mealy machines. This way, the fact that N

implements M is equivalent to Tr(N) ⊆ Tr(M).We say that M is n-implementable if it has
an implementation with at most n states. The problem of minimizing an OM M is the
one of finding an implementation for it with the minimum number of states.

Informally, the reason we call the branching “universal” is that M does not correspond to
an NFA in the same way that Mealy machines do to DFAs. Instead, the traces Tr(M) of an
OM M are given by a universal automaton of the same size, rather than a non-deterministic
one. The intuitive argument is that once an input word leaves ΩM , all behaviours are allowed.
In a way, this means that M accepts the complement of ΩM , which is given by an NFA.

5 Revising The Kim-Newborn Algorithm

In this section we describe an exponentially more efficient modification of the Kim-Newborn
(K-N) method [16], which represents the state-of-the-art exact solution for the Tail Minimiza-
tion Problem. This modification improves over the original method by avoiding an expensive
determinization step, and in exchange utilizes OMs instead of IS Machines.

Two important observations are the following.

▶ Observation 1. The n-replaceability decision problem Problem 3 is in NP: Given a
candidate T ′ with |ST ′ | ≤ n it takes polynomial time to build Mealy models for T ◦ H and
T ′ ◦ H, and to decide whether they are equivalent. The analogous statement clearly holds as
well when considering replacements for the head H.
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(b) A Mealy machine T from Y := {0, 1}
to Z := {△,□}.

Figure 2 The head H and the tail T of a cascade composition.

▶ Observation 2. A Mealy machine T ′ is a replacement for T if and only if λT (y) = λT ′(y)
for all y ∈ Out(H)

Because of Observation 1, there are exponential-time algorithms for Problem 1 and
Problem 3: there is a straightforward (“naive”) polynomial reduction of the n-replaceability
problem into a satisfiability problem along the lines of bounded synthesis [8]. This encoding
can be used to optimize the tail of a cascade composition by finding the minimum n for
which the resulting CNF formula is satisfiable. The exponential complexity of this procedure
contrasts with the double-exponential complexity of the K-N algorithm. This reasoning
also applies to more general networks of Mealy machines [12, Chapter 6], implying that
the approach for component minimization based on optimizing the flexibility [12, 32] is not
optimal in theory, as it takes doubly exponential time.

5.1 Proposed Modification
We give an overview of our minimization method here. The algorithm is divided in three
steps: (1) We compute an NFA A which accepts the language Out(H), (2) using A and T we
build an OM M whose set of implementations is precisely the set of replacements for T . By
Observation 2, this is ensured by ΩM = Out(H) and λM (y) = λT (y) for all y ∈ ΩM . Lastly,
(3) we find an implementation T ′ of M with the minimum number of states. This machine
T ′ is a minimal replacement for T .

This algorithm follows the K-N procedure but skips an expensive determinization step.
Indeed, the difference is that in the K-N method the NFA A obtained in (1) is determinized
before performing (2). This removes the branching from M , making it an IS machine, but
it yields |M | = O(2|H||T |) rather than |M | = O(|H||T |) in our method. Note that this IS
Machine M plays the role of the flexibility in the general approach (Section 3.1). Step (3),
the last one, is responsible for the overall complexity of our algorithm as well as the K-N
one, and takes 2|M |O(1) time. This makes the total time costs of our procedure and the K-N
one 2(|H||T |)O(1) and 2(2|H||T |)O(1) , respectively. We illustrate our method in Figure 3 and
Figure 4, where we minimize the tail of the cascade composition shown in Figure 2.

The Image Automaton

Let H be a Mealy machine from X to Y . In this section we describe how to obtain an NFA
whose language is Out(H) [13, 16]. The image automaton of H (sometimes called the
inverse automaton), written Im(H), is the NFA over Y defined as follows: Let SIm(H) := SH

and rIm(H) := rH . We set ∆Im(H)(s1, y) := {s2 ∈ SH | ∃x ∈ X s.t. λ(s1, x) = y, δ(s1, x) =
s2 }. It holds that L(Im(H)) = Out(H). Essentially, to obtain Im(H) one deletes the input
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machine H in Figure 2a.

1/△

0/△1/△

0/△ 0/△

1/△

0/�

1/△

1/△

0/△ 0/△1/�
B,2

C,0

A,2

B,1A,0C,1

(b) The restriction M := T |Im(H) of the Machine
T in Figure 2b to the automaton A in Figure 3a.

Figure 3 First and second step of the minimization of T in Figure 2

labels from H’s transitions, as shown in Figure 3a. The time and space complexity of this
construction is O(|H|).

The Restriction Machine

Let A be an NFA over Y , and T a Mealy machine from Y to Z. In this section our
goal is to build an OM M whose set of defined sequences ΩM is precisely L(A) and that
satisfies λM (y) = λT (y) for all y ∈ ΩM . The restriction of T to A, denoted by T |A,
is the OM M from Y to Z defined as follows. Let SM := ST × SA and rM := (rT , rA).
Given a state sM := (sT , sA) ∈ SM and an input y ∈ Y there are two possibilities: (1)
∆A(sA, y) ̸= ∅. In this case we mark the transition as defined (sM , y) ∈ DM , and set
∆M (sM , y) = {(s′

T , s′
A) | s′

T = δT (sT , y), s′
A ∈ ∆A(sA, y)}. Alternatively, (2) ∆A(sA, y) = ∅.

Here we just mark the transition as undefined (sM , y) /∈ DM . It is direct to see that both
ΩM = L(A) and λM (y) = λT (y) for all y ∈ ΩM .

An example is given in Figure 3b. This product construction generalizes the one in
the K-N algorithm: when A is deterministic, so is M , yielding an IS Mealy machine. The
construction of M := T |A can be performed in O(|T ||A|) time. In the case where A := Im(H)
results from the head H of a cascade, we can substitute |A| = O(|H|).

Reduction to a Covering Problem

Let M be an OM from Y to Z. In this section we describe how to find a minimal imple-
mentation of M . In order to do this, we generalize the theory of [10] for minimization of IS
machines in a natural way. This generalization can be used to extend existing minimization
algorithms to our setting. To illustrate this point, in Appendix C we describe a modification
of MeMin, an algorithm for the minimization of IS machines. Additionally, we describe
how to use this modification in the Tail Minimization Problem following our approach and
provide some preliminary experimental evaluation.

Following [10] the basic idea to obtain a smallest implementation of M is to define a
compatibility relation ∼ over SM and then use it to reduce the task to a covering problem
over SM . Two states s1, s2 ∈ SM are compatible, written s1 ∼ s2, if λM (s1, y) = λM (s2, y)
for all y ∈ ΩM (s1) ∩ ΩM (s2). We note that this relation between states is symmetric and
reflexive, but not necessarily transitive. A set Q ⊆ SM is called a compatible if all its
states are pairwise compatible. We say that Q is incompatible at depth k if k is the
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length of the shortest word y ∈ Y ∗ such that y is defined for two states s1, s2 ∈ Q, and
λM (s1, y) ̸= λM (s2, y). A convenient characterization is as follows:

▶ Lemma 3. Let Q ⊆ SM . The following statements hold: (1) Q is incompatible at depth 1
if and only if for some s1, s2 ∈ Q there is a defined input y ∈ Y with λM (s1, y) ̸= λM (s2, y).
(2) If Q is incompatible at depth i > 1 then ∆M (Q, y) is incompatible at depth i − 1 for some
y ∈ Y .

Lemma 3 gives a straightforward way to compute the compatibility relation ∼ over SM .
We begin by finding all pairs s1, s2 incompatible at depth 1. Afterwards we propagate the
incompatible pairs backwards: if s1 ≁ s2 and s1 ∈ ∆M (s′

1, y), s2 ∈ ∆M (s′
2, y), then s′

1 ≁ s′
2.

This process can be carried out in O(|M |2) time (see Appendix A for a reduction to Horn
SAT). When M = T |Im(H), it holds |M | = O(|H||T |), and the required time to compute the
∼ relation over B is O(|H|2|T |2).

Let F ⊆ 2S
M be a family where all C ∈ F are compatibles. We call F a closed cover

of compatibles over M if the following are satisfied: (1) rM ∈ C for some C ∈ F , and
(2) for any C ∈ F and y ∈ Y there is some C ′ ∈ F such that ∆(C, y) ⊆ C ′. The following
theorem implies that the problem of finding a minimal implementation for M is polynomially
equivalent to the problem of finding a closed cover of compatibles over it with the minimum
size. This equivalence is illustrated in Figure 4a.

▶ Theorem 4. Let M be an OM from Y to Z. Let |M | :=
∑

s,y |∆B(s, y)| be the number of
transitions in M . The following two statements hold: (1) Let N be an implementation of
M . Then it is possible to build a closed cover of compatibles F over M with |F | ≤ |SN | in
O(|M ||N |) time. (2) Let F be a closed cover of compatibles over M . Then it is possible to
build an implementation N of M with |SM | = |F | in O(|M ||F |) time.

Proof. We prove (1) and (2) separately. (1): Let N be an implementation of M . For
each sN ∈ SN we define the set Q(sN ) ⊆ SM as follows: Q(sN ) = { sM ∈ SM | ∃y ∈
ΩM s.t. δN (y) = sN , sM ∈ ∆M (y) }. It holds that each Q(sN ) is a compatible, as the
output of each state sM ∈ Q(sN ) over a defined input sequence has to coincide with the
output of sN in N . Moreover, rM ∈ Q(rN ), and for any sN ∈ SN , y ∈ Y it holds that
∆M (Q(sN ), y) ⊆ Q(δM (sN , y)). Thus, the family F := {Q(sN ) | sN ∈ SN } is a closed cover
of compatibles over N , and |F | ≤ |SN |. Note that |F | may be strictly lesser than |SN |, as
for some s1

N , s2
N ∈ SM it may happen that Q(s1

M ) = Q(s2
M ). The sets Q(sN ), and with

them the family F , can be derived from a product construction between M and N which
takes O(|M ||N |) time. (2): Let F be a closed cover of compatibles over M . We build an
implementation N of M : Set SN := F . Thus, each state in N corresponds to compatible
C ∈ F . We define rN as an arbitrary C ∈ F satisfying rM ∈ C. Let C ∈ F and y ∈ Y .
We define δN (C, y) as an arbitrary C ′ ∈ F such that ∆M (C, y) ⊂ C ′. To define λN (C, y)
we take into account two possibilities: (1) (sM , y) ∈ DM for some sM ∈ C. Then we set
λN (C, y) = λM (sM , y). Note that λN (C, y) is independent of the particular choice of sM ,
as M being consistent implies that all choices yield the same output. (2) (sM , y) /∈ DM

for all sM ∈ C. In this case put an arbitrary output for λN (C, y). It can be checked that
N is indeed an implementation of M (Appendix B). The Mealy machine N given by this
construction satisfies |SN | = |F |, and can be built in O(|M ||N |) time and space. ◀

6 Complexity the Minimization Problems

As evidenced in Observation 1, deciding whether the tail (head) in a cascade composition is
n-replaceable is an NP problem. Here we show that this bound is tight, meaning that the
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P

Q

C,1 A,0 B,1 C,0

B,2

A,2

(a) The relation of the OM M in Figure 3b,
together with a closed cover of compatibles
P and Q

P Q

1/△
0/�

0/△

1/�

(b) A Mealy machine T ′ corresponding to the cover
in Figure 4a.

Figure 4 Final step of the minimization of T in Figure 2. The machine T ′ in (b) is a minimal
replacement for T .

problem is NP-hard as well. To the best of our knowledge, these complexity results have not
been shown elsewhere.

6.1 Tail Minimization

▶ Theorem 5. Deciding whether the tail in a cascade composition is n-replaceable is an
NP-hard problem.

Proof. Let N be an IS machine and let n ∈ N. We build machines H and T in polynomial
time satisfying that N is n-implementable if and only if T is n-replaceable in T ◦ H. As
deciding whether N is n-implementable is an NP-complete problem [23], this reduction proves
the theorem. Informally, the aim is to build H whose output language coincides with ΩN ,
and use an arbitrary implementation of N as T . This idea does not quite work because it
requires ΩN to have no maximal words, which may not be the case, but this can be solved
adding some extra output symbols and transitions. Let Y and Z be the input and output
alphabets of N respectively. Let Ŷ := Y ∪{⊥}, Ẑ := Z ∪{⊥}, where ⊥ is a fresh symbol. We
begin by building a machine H from Y to Ŷ . We set SH := SN ∪{∗}, where ∗ is a fresh state,
and rH := rN . Given (s, y) ∈ SN × Y , we define δH(s, y) := δN (s, y) and λH(s, y) := λN (s, y)
if (s, y) ∈ DN , and δH(s, y) := ∗ together with λH(s, y) := ⊥ otherwise. We also define
δH(∗, y) := ∗ and λH(∗, y) := ⊥ for all y. It is direct to see that Out(H) = ΩN {⊥}∗. Now
we build another machine T from Ŷ to Ẑ. Let N ′ be an arbitrary implementation of N ,
built in polynomial time simply by adding the missing transitions. To construct T we add
self loops δT (s, ⊥) = s, λT (s, ⊥) = ⊥ to N ′ at each state s ∈ SN ′ .

Now we show that T is n-replaceable in T ◦ H if and only if N is n-implementable. As
exposed in Observation 2, a machine T ′ is a valid replacement for T if and only if for all
y ∈ Out(H) λT ′(y) = λT (y). Moreover, any word y ∈ Out(H) is of the form u(⊥)k, where
u ∈ ΩN . By construction λT (u(⊥)k) = λN (u)(⊥)k. This implies the following: (1) Let
T ′ be a replacement for T . Then removing all transitions on input ⊥ from T ′ yields an
implementation of N of the same size. (2) Let T ′ be an implementation of N . Then adding
self-loops δT (s, ⊥) = s, λT (s, ⊥) = ⊥ to all states of T ′ yields a replacement for T in T ◦ H

with the same number of states. This proves the result. ◀
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6.2 Head Minimization
Our main result here, Theorem 8, is a polynomial-time reduction from the Boolean satis-
fiability problem. We review the necessary concepts now. A literal is an expression of the
form x or ¬x, for some Boolean variable x. A clause C is just a (finite) set of literals. A
CNF formula F over n variables is a (finite) family {C0, . . . , Cm−1} of clauses where the
Boolean variables are among x0, . . . , xn−1. We consider only formulas F whose clauses are
non-tautological, meaning that no clause in F contains a pair of literals of the form x,¬x,
for some variable x. We define an assignment of n Boolean variables as word σ ∈ {−1, 1}n.
We say that this assignment satisfies a clause C over x0, . . . , xn−1 if either σi = 1 for some
xi ∈ C, or σi = −1 for some ¬xi ∈ C. A CNF formula F over n variables is satisfiable if
there is some assignment that satisfies all its clauses.

Fix a number of variables n > 0 for the rest of the section. The idea behind our reduction
in Theorem 8 is that we can represent assignments σ as heads Hσ and formulas F as tails TF
in a way that the composition TF ◦Hσ exhibits a unique special behaviour when σ satisfies F .
We define the following alphabets X := {⊥}, Y := {−1, 1, ⊥}, Z := {⊥, ⊤}. In this section
we consider compositions T ◦ H where H is a machine from X to Y and T from Y to Z.
Note that both H and the cascade T ◦ H can only produce a unique string of outputs each.
We give now two mappings: one from assignments σ ∈ {−1, 1}n to machines Hσ from X to
Y , and another from formulas F over n variables to machines TF from Y to Z.

The machine Hσ simply outputs the values σi in succession, before producing ⊥ in the
(n + 1)-th step and returning to its initial state. More formally, we define SHσ

:= [n + 1],
rHσ

:= 0. For the transition and output functions we define δHσ
(i, ⊥) = i + 1, λHσ

(i, ⊥) = σi

for all i ∈ [n], together with δHσ
(n, ⊥) = 0 and λHσ

(n, ⊥) = ⊥.
The construction of TF is more involved. We give here a high-level description. The details

follow in a fairly direct way, and can be found at Appendix H. Let F = {C0, . . . , Cm−1}.
To describe TF we specify its behaviour over an arbitrary input string y ∈ Y ∗ of length
ℓ := (m + 2)(n + 1). We say that y := y0 . . . yℓ−1 has the intended format if yi = ⊥
whenever i = n (mod n + 1), and yi ∈ {−1, 1} for the other values of i. Whenever y has the
intended format, it can be written as σ0 ⊥ σ1 ⊥ . . . ⊥ σm+1 ⊥, where each σi is an assignment
of n variables. In this case, we write y = [σ0, . . . , σm+1]. We specify various properties
of TF now: (I) The machine TF has two sink states Sat and UnSat, which only output
⊤ and ⊥ respectively. (II) The other states in TF only output ⊥ as well, so TF only can
produce ⊤ from the state Sat. (III) When TF reads a string y = [σ0, . . . , σm+1] with the
intended format, it ends up in Sat if σi+2 satisfies the clause Ci in F , for all 0 ≤ i < m. If
this does not hold, TF reaches UnSat. (IV) In the alternative case, whenever the string
y ∈ Y ℓ deviates from the intended format, TF immediately moves to UnSat. It holds that a
machine TF satisfying (I)-(IV) with no more than 2ℓ states can be built in time polynomial
in ℓ (see the explicit construction at Appendix H).

▶ Lemma 6. Let F = {C0, . . . , Cm−1} be a CNF over n variables, let σ ∈ {−1, 1}n be an
assignment, and let ℓ := (m + 1)(n + 2). Then the following two statements are equivalent:
(1) the cascade TF ◦ Hσ outputs ⊥ during the first ℓ steps, and ⊤ from that point on, and
(2) σ satisfies F .

Proof. Let y := λHσ
(⊥ℓ) be the first ℓ outputs of Hσ. Clearly (1) holds if and only if

δTF (y) = Sat. By construction of Hσ, y = [σ, σ, ..., σ]. That is, y consists of m + 2 copies of
σ with ⊥ in between as a separating character. This sequence follows the intended format,
so δTF (y) = Sat if and only if σ satisfies each of the clauses Ci ∈ F , meaning that σ satisfies
F itself. This proves the result. ◀ ◀
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▶ Lemma 7. Let F = {C0, . . . , Cm−1} be a CNF over n variables and ℓ := (m + 1)(n + 2).
The following statements are equivalent: (1) there exists a Mealy machine H from X to Y

with |SH | = n + 1 satisfying that TF ◦ H outputs ⊤ from the (ℓ + 1)-th step on, and (2) the
formula F is satisfiable.

Proof. The fact that (2) implies (1) follows directly from last lemma: given a satisfying
assignment σ, clearly (1) holds for H = Hσ. We show that (1) implies (2) as well. Let H be
a Mealy machine witnessing (1). Let y = λH(⊥2(n+1)). Necessarily y follows the intended
format. Otherwise we would have δTF (y) = UnSat. Thus y is of the form [σ, σ′] for two
assignments σ, σ′ ∈ {−1, 1}n. As H has n + 1 states, it has to be that σ = σ′ and H equals
Hσ (up to isomorphism). As Hσ witnesses (1), using last lemma we obtain that σ satisfies F
and (2) holds, showing the result. ◀

▶ Theorem 8. Deciding whether the head in a cascade composition is n-replaceable is an
NP-hard problem.

Proof. As stated in the beginning of this section, we give a reduction from the Boolean
satisfiability problem. Given a CNF formula F := {C0, . . . , Cm−1} over n variables we give a
polynomial-time construction of Mealy machines H and T , from X to Y and from Y to Z

respectively, such that H is n + 1-replaceable in T ◦ H if and only if F is satisfiable. For
T we simply take TF , as defined above. As stated during its description, the construction
of TF takes time polynomial in the size of F and the number of variables n. Let F =
{C0, . . . , Cm−1} Let ℓ := (m + 2)(n + 1), as before. For H, we take an arbitrary machine
where λH(⊥ℓ) = [σ0, . . . , σm+1] for some assignments σi ∈ {−1, 1}n, where σ2+i satisfies the
clause Ci for each 0 ≤ i < m. By construction, TF reaches the state Sat after reading the
first ℓ outputs from H, and so TF ◦ H emits the symbol ⊤ from step ℓ + 1 onwards. By the
last lemma H is (n + 1)-replaceable in TF ◦ H if and only if F is satisfiable. ◀

7 Complexity of the Synthesis Problems

During this part of the paper we study the Tail and Head Synthesis Problems, giving lower
complexity bounds for both of them that coincide with the cost of existing methods.

7.1 Tail Synthesis
We consider the Tail Synthesis Problem, where both the head H and the system model
M are given. The state-of-the art for this problem is represented by the general approach
described in Section 3.1. Here the flexibility F is a DFA exponentially larger than H, M and
both deciding the feasibility of the synthesis problem as well as computing a solution when
one exists take time linear in the size of F . Our main result here is the fact that while the
Feasibility Problem has polynomial time complexity, there are instances of the Tail Synthesis
Problem where minimal solutions have exponential size, and hence the problem itself has
exponential complexity, matching the cost of the general method. The proof of this result
relies on a construction that, given a feasible instance of the Synthesis Problem, produces an
OM that represents all its solutions.

Feasibility of the Synthesis Problem

We begin by characterizing the feasible instances of the Tail Synthesis Problem. Let H and
M be Mealy machines from X to Y and from X to Z respectively. A solution T to the
synthesis problem (that is, T ◦ H ≡ M) must satisfy λT (λH(x)) = λM (x) for all x ∈ X∗. In



Anonymous author(s) 13

particular, if a solution T exists, then there cannot be two words x, x′ with λH(x) = λH(x′)
but λM (x) ̸= λM (x′). We argue that the converse holds as well.

▶ Proposition 9. There exists a Mealy machine T with T ◦ H ≡ M if and only if for any
two words x, x′ ∈ X∗ with λH(x) = λH(x′) it holds λM (x) = λM (x′) as well.

Proof. See Appendix D. ◀

As a consequence of this result, deciding the feasibility of the Tail Synthesis Problem
given by H and M is equivalent to checking whether λH(x) = λH(x′), but λT (x) ̸= λT (x′)
for some x, x′ ∈ X∗. The existence of such words x, x′ can be easily computed in O(|H|2|M |2)
time via a fixed point procedure on the synchronous product of H and M .

Representing all Solutions

We give the construction of an OM with size O(|H||M |) encoding all solutions for a feasible
instance of the Tail Synthesis Problem. We note that this is an exponentially more succinct
representation of the solutions than the E-machine from [32]. In fact, this construction
is equivalent to the NDE-machine introduced in [12, 31] but with universal acceptance
conditions, rather than non-deterministic ones.

We define an OM N from Y to Z as follows. Let SN ⊆ SH × SM be the set of pairs
(sH , sM ) that are reachable in the synchronous product H × M . That is, those satisfying
δH(x) = sH and δM (x) = sM for some x ∈ X∗. Let rN := (rH , rM ). We define the transition
and output functions ∆N , λN for N . Fix a transition (sH , sM ) ∈ SN , y ∈ Y . Let V be
the set of x ∈ X satisfying λH(sH , x) = y. We take two cases into consideration. If the
set V is empty, then we set the transition as undefined ((sH , sM ), y) /∈ DN . Otherwise, if
V ̸= ∅, we mark the transition as defined ((sH , sM ), y) ∈ DN . In this case λM (sM , x) takes
a unique value z for all x ∈ V . Indeed, the opposite would yield two sequences x, x′ ∈ X∗

with λH(x) = λH(x′) and λH(x) ̸= λM (x′), making the Tail Synthesis Problem given by
H and M infeasible. Hence, we can define λN ((sH , sM ), y) as z, and ∆N ((sH , sM ), y) as
{ (s′

H , s′
M ) | ∃x ∈ V s.t. s′

H = δH(sH , x), s′
M = δM (sM , x) }.

▶ Proposition 10. Let N be the OM defined above. A machine T satisfies T ◦ H ≡ M if
and only if T implements N .

Proof. The machine T satisfies T ◦H ≡ M if and only if for all y ∈ Out(H) and x ∈ X∗ with
λH(x) = y, it holds λT (y) = λM (x). Note that by construction ΩN = Out(H). Moreover,
there is a run of N over y whose output is z if and only if there is some x ∈ X∗ satisfying
λH(x) = y and λM (x) = z. This shows the result. ◀

Exponentially Large Tails

In this section we show that there are instances of the synthesis problem (Problem 2) where
all solutions have at least exponential size.

▶ Theorem 11. There exist finite alphabets X, Y, Z and families of increasingly large Mealy
machines {Mn}n, from X to Y , and {Hn}n, from X to Z, for which the size of any Tn

satisfying Tn ◦ Hn ≡ Mn is bounded from below by an exponential function of |Mn||Hn|.

The proof of this result has two parts. First, we show an infinite family of OMs for
which all implementations have exponential size (Lemma 12). Afterwards we prove that
any OM N can be “split” into Mealy machines M and H with the same number of states
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(plus one) as N for which any T with T ◦ H ≡ M provides an implementation of N

(Lemma 13). These two results together prove Theorem 11. Some care has to be employed
in order to obtain fixed alphabets in Theorem 11. The alphabets for H and T in the
splitting construction of Lemma 13 depend on the alphabets of N and its degree, defined
as d(N) := max(s,y)∈DN

|∆N (s, y)|. Hence, it is necessary to ensure in Lemma 12 that the
resulting OMs have bounded degree.

▶ Lemma 12. There are finite alphabets Y, Z and increasingly large OMs {Nn}n from Y to Z

for which the size of a machine Tn implementing Nn is bounded from below by an exponential
function of |Nn|. Moreover, it is possible to build Nn in such a way that maxn d(Nn) = 2

Proof. See Appendix E. ◀

▶ Lemma 13. Let N be a consistent OM from Y to Z, and let k := d(N). Let X := Y × [k],
Ŷ = Y ∪ {⊥} and Ẑ = Z ∪ {⊥}, where ⊥ is a fresh symbol. Then there exist Mealy machines
H from X to Ŷ , and M from X to Ẑ, such that (1) |SH |, |SM | = |SN | + 1, (2) there are
machines T with T ◦ H ≡ M , and (2) any of those machines T satisfy λT (y) = λN (y) for
all y ∈ ΩN .

Proof. We give an explicit construction for H and M . We define the edge set of N ,
GN ⊂ SN × Y × SN , as the set consisting of the triples (s, y, s′) where (s, y) ∈ DN and
s′ ∈ ∆N (s, y). By the definition of k, we can build a map L : GN → [k] satisfying
L(s, y, t1) ̸= L(s, y, t2), for any (s, y) ∈ DT and any two different states t1, t2 ∈ ∆N (s, y).
The map L assigns a number 0 ≤ i < k to each edge (s, y, s′) ∈ GN , giving different labels
to each edge corresponding to a pair (s, y) ∈ DN . We define H and M at the same time.
Set SH , SM := SN ∪ {∗}, where ∗ is a fresh state, and rH , rM := rN . Let s ∈ SN ∪ {∗}
and let x := (y, i) ∈ X = Y × [k]. We take into account three cases: (1) If s = ∗, then
δH(∗, x), δM (∗, x) = ∗, and λH(∗, x), λM (∗, x) = ⊥. (2) If s ∈ SN and there exists some
t ∈ SN with L(s, y, t) = i, then δH(s, x), δM (s, x) = t, λH(s, x) = y, and λM (s, x) = λN (s, y).
Finally, (3) if s ∈ SN and there is no t with L(s, y, t) = i, then δH(s, x), δM (s, x) = ∗,
λH(s, x), λM (s, x) = ⊥. We claim that H and M built this way satisfy the theorem’s
statement (see Appendix F). ◀

7.2 Head Synthesis
Next, we study the Head Synthesis Problem with a given tail T and a system model M . For
completeness, we show that the cost of the existing techniques matches the complexity of the
problem. Here, the procedure shown in [4] obtains the flexibility F for H through a product
construction between T and M . This way, obtaining a solution for the synthesis problem, if
it exists, takes O(|ST ||SM |) time. We show that there are instances of the problem where
solutions H have at least |ST ||SM | states, giving a tight complexity bound for the problem.

▶ Theorem 14. Let X := {⊥}, Y, Z := {0, 1}. There are sequences of increasingly large
machines {Tn}n and {Mn}n from Y to Z and from X to Y respectively satisfying the
following: (1) there exists a machine Hn from X to Y satisfying Tn ◦ Hn ≡ Mn, and (2) all
machines H witnessing (1) have at least |STn

||SMn
| states.

Proof. Let {pn}n and {qn}n be sequences of increasingly large natural numbers satisfying
both that pn and qn are co-primes as well as pn < qn for all n. The machine Mn is a cycle of
size qn that emits 1 every qn steps and 0 otherwise. That is, (1) SMn

:= {s0, . . . sqn−1}, (2)
rMn

:= s0, (3) δMn
(si, ⊥) := sj where j = i + 1 (mod qn) for all i, and (4) λMn

(si, ⊥) := 0,
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if i ̸= qn − 1, or 1 if i = qn − 1. The machine Tn is defined similarly. It consists of a pn-cycle
where each state outputs whichever input it receives except for the last one, which flips the
input. This way, (1) STn

:= {t0, . . . tpn−1}, (2) rTn
:= t0, (3) δTn

(ti, ⊥) := tj where j = i + 1
(mod pn) for all i, and (4) for all y = 0, 1 λMn(si, y) := y, if i ̸= pn − 1, or 1 − y if i = pn − 1.

Fix n > 0. We define the sequence y ∈ {0, 1}pnqn by setting yi := 0 whenever both
i ̸= −1 (mod qn) and i ̸= −1 (mod pn) or both i = −1 (mod qn) and i = −1 (mod pn).
Otherwise we set yi := 1. A machine Hn satisfies Tn ◦ Hn ≡ Mn if and only if it just outputs
y periodically. This clearly can be done, but y has no periodic sub-sequence, so H has to
contain at least pnqn states. This shows the result. ◀

8 Other Compositions

The results and techniques exposed so far pertain to component optimization and synthesis
in cascade compositions. We briefly mention here how these findings relate to the more
general setting of arbitrary compositions.

Firstly, our results about the Tail Minimization and Synthesis extend to any composition
of two components H and T where the outputs of the component under consideration T are
fully observable. Without loss of generality we can assume that (1) T ’s input signals coincide
with H’s output signals, (2) the system’s output signals coincide with T ’s output signals,
and (3) H’s input signals are the system’s input signals plus T ’s output ones. This situation
is depicted in Figure 1b. We claim that the minimization and synthesis of T in this context
can be polynomially reduced to those of the tail in a cascade composition. The reductions
are similar to the ones in [29], and can be found in Appendix G.

The Component Minimization Problem lies also in NP for arbitrary two-component
compositions by the same reasoning as in Observation 1. When the composition is non-trivial
(i.e., there is some communication between the components), the problem is easily seen to
be NP-complete. For this, note that it generalizes either the Tail Minimization Problem, if
the component under optimization has some observable outputs, or the Head Minimization
Problem, in the alternative case.

9 Conclusions and Future Work

In this paper we have shown that there was a surprising discrepancy between the complexity
of the Tail Minimization Problem and the cost of current solutions, and we have proposed a
modification of the existing main technique which is exponentially less costly. This study can
also be carried out in more general versions of the Component Minimization Problem where
this mismatch also occurs. Additionally, one of the main desired outcomes of this research
should be the development of practically efficient solutions.

Additionally, we have shown tight complexity bounds for both the Minimization and
the Synthesis problem in cascade compositions. Among other things, we proved that the
Component Synthesis Problem has polynomial cost for the head, but for the tail this
complexity is exponential. However, the complexity of the problem in other architectures is
left unaddressed. Whether those are the two only possible complexity classes and the exact
conditions under which each of them occurs are open questions. These should be the object
of future research.
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A Horn CNF Encoding for the Incompatibility Relation

Let M be an OM from Y to Z. In this section we describe a way of computing the compatibility
relation over M defined in Section 5.1 by finding the minimal satisfying assignment of a
Horn formula. Let m := |SM |. We identify states in SM with numbers j ∈ [m]. We describe
our Horn encoding as follows. For each i, j ∈ [m] with i ≤ j we introduce a variable Xi,j

meaning i ≁ j. We give now the clauses of the formula. For each pair i ≤ j we consider
two scenarios: (1) If i and j are incompatible at depth one, we add the clause Xi,j . (2)
Otherwise, for all y ∈ Y, i′ ∈ ∆M (i, y), j′ ∈ ∆M (j, y) we add clauses Xi′,j′ =⇒ Xi,j , where
the values of i′ and j′ are swapped if necessary to ensure i′ ≤ j′.

It follows from Lemma 3 that two states i ≤ j are compatible if and only if Xi,j is true
in the minimal satisfying assignment for this encoding. It is well-known that assignment can
be obtained in time linear in the size of the formula [7]. Moreover, the encoding has size
O(|M |2). Hence, the compatibility relation over M can be computed in O(|M |2) time.

B Correctness of the Covering Reduction

Proof that the N constructed in Theorem 4 implements M : Let y ∈ ΩM . Consider a
run s0 := rM , y0, z0, s1, . . . , sn, yn, zn, sn+1 of M on y, and let C0 := rN , y0, z′

0, C1, . . . , Cn, yn,

z′
n, Cn+1 be the run of N on y. By construction, si ∈ Ci for all 0 ≤ i ≤ n + 1. Moreover,

as λM (si, yi) = zi it also holds λN (Ci, yi) = zi. Thus, λM (y) = λN (y) and N implements
M . ◀

C Generalization of MeMin

Let M be an OM from Y to Z. Further suppose that M = T |Im(H) for some machines T, H.
Replacements of T in T ◦ H are precisely the implementations of M . Thus, solving the Tail
Minimization Problem amounts to finding a minimal implementation of M . As shown in
the previous section, this is equivalent to finding a minimal closed cover of compatibles over
M . This reduction has been widely employed in the study of the analogous minimization
problem for IS Mealy machines [25, 1, 18]. We show how to adapt MeMin [1] for finding a
minimal implementation of M by making use of the theory developed in Section 5.1.

Given a bound n, we reduce the problem of finding a closed cover F of n compatibles over
M to a SAT instance. The CNF encoding follows closely the one in [1], and the details can
be found at Appendix C.1. As them, we also compute in advance a so-called partial solution.
This clique of pairwise incompatible states Cl ⊆ SM is obtained via a greedy algorithm. Each
state in Cl must belong to a different compatible in F , so the clique can be used for adding
symmetry breaking predicates to the encoding and thus to reduce solving times.

In order to obtain the minimal replacement for a tail T in T ◦ H we look for the minimum
n that yields a satisfiable CNF encoding. It is clear that such n must lie in the interval
[|Cl|, |ST |]. In particular, when |Cl| = |ST |, the machine T is already optimal and no
encoding is needed. Otherwise, any searching strategy for n in [|Cl|, |ST |] may be employed.
In our case, we simply employ linear search from |Cl| upwards, which is expected to perform
well when |Cl| is a good estimate for the optimal n, as is the case in [1]. A preliminary
experimental evaluation of this approach can be found in Appendix C.2.



Anonymous author(s) 19

C.1 CNF Encoding for OM Minimization

We describe how to reduce the problem of finding a closed cover of n over M to SAT,
following the CNF encoding given in [1]. We identify the set SM with the set of integers [m],
where m := |SM |. Finding a closed cover of n compatibles is equivalent to finding two maps
C : [n] → 2[m] and Succ : [n] × Y → 2[n] that satisfy: (1) for each i ∈ [n] the set C(i) ⊆ [m]
is a compatible, (2) rM ∈ C(i) for some i, (3) ∆M (C(i), y) ⊆ C(j) for all j ∈ Succ(i, y), and
(4) Succ(i, y) ̸= ∅ for each i ∈ [n], y ∈ Y . The propositional variables of the CNF encoding
are the following: A variable Ls,i for each s ∈ [m], i ∈ [n], encoding that s ∈ C(i). A variable
Ni,j,y for each pair i, j ∈ [n], y ∈ Y , encoding that j ∈ Succ(i, y). The clauses of our encoding
are as follows: A clause ¬Ls1,i ∨¬Ls2,i, for each i ∈ [n], s1, s2 ∈ [m] with s1 ≤ s2 and s1 ≁ s2.
This encodes condition (1). A clause ∨i∈[n]Lr,i, which encodes condition (2). We have a
clause ∨j∈[n]Ni,j,y for each i ∈ [n], y ∈ Y , encoding condition (3). Finally, there is a clause
(Ni,j,y ∧ Ls,i) =⇒ ∨Ls′,j for each s ∈ [m], y ∈ Y with (s, y) ∈ DM , s′ ∈ ∆M (s, y), i, j ∈ [n].
These clauses encode condition (4). The CNF obtained so far already encodes the desired
problem. However, we also use a partial solution Cl ⊆ SM for adding symmetry breaking
predicates. If Cl = {s1, . . . , sl} is a set of l ≤ n pair-wise incompatible states, we can add
the clauses Lsi,i for each 0 ≤ i ≤ l.

C.2 Experimental Evaluation

Since the Tail Minimization Problem is in NP, it allows for a straightforward reduction to
SAT, which already improves over the doubly-exponential complexity of the K-N algorithm.
We show in Figure 5a preliminary experimental results comparing this solution with our
proposed one. The baseline method uses a “naive” CNF encoding to decide whether the
tail component is n-replaceable. Like in our proposed approach, this is done for increasing
values of n until a satisfiable CNF is obtained. The encoding can be seen as analogous to
ours but without the information about the incompatibility graph and the partial solution.
The experiments were run on cascade compositions consisting of independently randomly
generated machines M and T with n = |SM | = |ST | and input/output alphabets of size
4. Mean CPU times of all runs for each n are plotted for both the baseline algorithm and
ours. The baseline implementation is not able to complete any instance with n ≥ 12 with
a timeout of 10 minutes, while our algorithm solved all instances in under a minute. We
conclude that our approach has a clear benefit over a straightforward approach for this class
of random instances. Both the implementation of our algorithm and the baseline algorithm
use CryptoMiniSat [26]. All experiments were run on a Intel Core i5-6200U (2.30GHz)
machine.

(a) A comparison between our proposed al-
gorithm and the baseline one.

(b) Random experiments run with our proposed
minimization method.
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One reason for the good performance is that our algorithm skips the CNF encoding
entirely in about half the instances by using the size of the partial solution, as discussed
in Section 5.1. To illustrate this we ran 200 additional experiments where T and H were
generated independently with random sizes between 12 and 60 states. The running times are
shown in Figure 5b, where orange points correspond to instances where it was possible to
avoid any CNF encoding, and the blue ones correspond to the rest. It can be observed that
orange and blue points form two separate clouds of points. It is apparent that the algorithm
is significantly more efficient when it does not call the SAT solver, but the approach uses
under a minute regardless of whether the SAT solver is employed.

D Characterization of Feasible Synthesis Instances

Proof of Proposition 9. The fact that T ’s existence implies the second part of the statement
is straightforward, as discussed above. We prove the other implication. Suppose that any
two words x, x′ with λH(x) = λH(x′) also satisfy λM (x) = λM (x′). This defines a map
F : Out(H) → Z∗ by setting F (y) = λM (x) if y = λH(x). Let us define the language
LF ⊆ (Y × Z)∗ as the one consisting of the words ⟨y, F (y)⟩ for all y ∈ Out(H). Clearly this
language is regular and prefix-closed. Hence, there is some Mealy machine T form Y to Z

satisfying F (y) = λT (y) for all y ∈ Out(H). By definition of F , we have λT (λH(x)) = λM (x)
for all x ∈ X∗, and T ◦ H ≡ M . This proves the result. ◀

E Observation Machines with no Small Implementations

Fix n > 0. Figure 6 shows the construction of an OM M (bottom right) from Y := {a, b} to
Z := {a, b, ⊤} for which all implementations have at least 2n states. Moreover, d(M) = 2.
Let y0y1 . . . y2n−1 be a word in Y ∗. M behaves the following way: (1) It outputs ⊤ in
response to the first n inputs y0, . . . , yn−1. (2) Starting from yn, M responds with ⊤ until b

is received as an input. (3) If yn+i is the first input equal to b since yn, then M outputs yi

in response. Intuitively, an implementation of M has to have at least 2n states because it
has to store the first n inputs in order to carry out (3).

F Correctness of the splitting construction

Correctness of the constructions in Lemma 13. Here we show that the given constructions
for H and M indeed fulfill the result. We have to show that (1) some T satisfies T ◦H ≡ M and
(2) any such T also satisfies λN (y) = λT (y) for all y ∈ ΩN . Remember that characters x ∈ X

are (input,label) pairs (y, l) ∈ Y × [k]. We say that a word x := (y0, l0) . . . (yn, ln) ∈ X∗ labels
a run of N if N has a run rN = s0, y0, z0, s1, . . . , sn, yn, zn, sn+1 where L(si, yi, si+i) = li for
all 0 ≤ i ≤ n. Given such x by construction s0, (y0, l0), y0, s1, . . . , sn, (yn, ln), yn, sn+1 and
s0, (y0, l0), z0, s1, . . . , sn, (yn, ln), zn, sn+1 are the runs of H and M on x, respectively. Let
x ∈ X∗ be arbitrary. We can write x = uv, where u = ⟨y, l⟩ is the largest prefix of x which
labels a run of N . The previous observation yields λH(u) = y, λM (u) = λN (y). Moreover, by
construction λH(s, v), λ(s, v) are both sequences of only ⊥ symbols, where s = δH(u) = δM (u).
This way we have shown that the language E(H, M) = { ⟨λH(x), λM (x)⟩ | x ∈ X∗ }
equals { ⟨y, λN (y)⟩ | y ∈ ΩN }{ ⊥ }∗. This identity proves both (1) and (2). Indeed, if
λH(x) = λH(x′), then necessarily λM (x) = λM (x′). By Proposition 9 this implies (1). Also,
if λH(x) = y and y ∈ ΩN , then λM (x) = λN (y), which shows (2). ◀
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Figure 6 The construction of an OM with no small implementations (bottom right). The symbol
∗ stands for both a, b.

G Reductions to Cascade Compositions

We put T ⊙H for the composition between two Mealy machines H and T shown in Figure 1b.
This composition is not well-defined in general [12, Section 6.2], but a sufficient requirement
is that H is a Moore machine, for example. Analogously to Problem 1, we consider the
problem of finding a minimal replacement for T in T ⊙ H when both T and H are given. In
Figure 7a it is shown how to build a machine H ′ such that finding a minimal replacement for
T in T ⊙ H is equivalent to finding a minimal replacement for T in the cascade composition
T ◦ H ′. Similarly, when M and H are given, we can study the problem of finding T with
T ⊙ H ≡ M . In Figure 7b it is shown how to build H ′ in a way that T satisfying T ⊙ H ≡ M

is equivalent to T ◦ H ′ ≡ M .

H Construction of a Tail Representing a CNF Formula

The set STF contains the following states: (1) a state Init(i) for each 0 ≤ i < 2(n + 1),
(2) a state Clause(k, i, b) for each 0 ≤ k < m, 0 ≤ i < n + 1, b ∈ {T, F}, and (3)
two additional states called Sat and UnSat. As mentioned before, Sat and UnSat are
sink states, λTF (Sat, y) = ⊤ for all y ∈ Y and λTF (s, y) = ⊥ for all s ̸= Sat, y ∈ Y .
Hence, we only need to define δTF . The first 2(n + 1) inputs are read using the states
Init(i), which ensure that the intended format is followed. Let rTF := Init(0). For all
0 ≤ i ≤< 2(n + 1) with i ̸= n, 2n + 1 we define and δF (Init(i), y) := Init(i + 1) for all
y = −1, 1 and δF (Init(i), ⊥) := UnSat. For i = n, 2n + 1 we set δF (Init(i), y) := UnSat
if y = −1, 1. We also define δF (Init(n), ⊥) := Init(n + 1), and δF (Init(2n + 1), ⊥) :=
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Figure 7 Polynomial transformations to cascade compositions.

Clause(0, 0, F) if m > 0 (i.e., F contains some clause) or δF (Init(2n + 1), ⊥) := Sat if
F is empty. Now we describe the transition function on the states Clause(k, i, b). Let
0 ≤ k < m and 0 ≤ i < n. Then δF (Clause(k, i, b), ⊥) := UnSat for both b = F, T.
Whenever y ∈ {−1, 1} we set δF (Clause(k, i, T), ⊥) := Clause(k, i + 1, T). If y = −1, resp.
y = 1, and the clause Ck contains the literal ̸= xi, resp. xi, then δF (Clause(k, i, F), y) :=
Clause(k, i + 1, T). Now the only transitions left to define are those coming out of the
states Clause(k, n, b). For all b, y we set δF (Clause(k, n, F), y) := UnSat. Additionally, if
y ≠ ⊥ we also define δF (Clause(k, n, T), y) := UnSat. Finally, δF (Clause(k, n, T), ⊥) :=
Clause(k, 0, F) when k < m − 1, and δF (Clause(m − 1, n, T) := Sat.
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